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ABSTRACT 

In this article, we find equations to characterize projective equivalence between two special classes of 

(𝛼, 𝛽)-metrics  𝐿 = 𝛼 + 𝛽 +
𝛽2

𝛼
  and  �̅� =  

𝛼2

𝛽
, where 𝛼 and �̅� are two Riemannian metrics and  𝛽 and �̅� 

are two one forms. Further, we study projective relation between same these two (𝛼, 𝛽)-metrics. 
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INTRODUCTION 
In projective Finsler geometry, we study projectively equivalent Finsler metrics on a manifold, namely, geodesics 

are same up to a parametrization. J. Douglas introduces two projective quantities: the (projective) Douglas curvature 

and the (projective) Weyl curvature. The Douglas curvature always vanishes for Riemannian metrics and the Weyl 

curvature is an extension of the Weyl curvature in Riemannian geometry. Finsler metrics with vanishing Douglas 

curvature are called Douglas metrics. Roughly speaking, Douglas metrics are locally projectively Finsler metrics. 

Douglas metrics form an important class of metrics in Finsler geometry. Two Finsler metrics 𝐿 and �̅� on a manifold 

𝑀 are said to be projectively equivalent if they have the same geodesics as point sets. 

 

Two regular metrics on a manifold are said to be pointwise projectively related if they have the same geodesics as 

point sets. The projective relation is said to be trivial if the corresponding sprays are equal. Two regular metric  

paces are said to be projectively related if there is a diffeomorphism between them such that the pull-back metric 

metric is pointwise projective to another one. The projective changes between two Finsler spaces have been studied 

by many geometers [4] [9] [10] [11]. 

 

An (𝛼, 𝛽)-metrics form a special and important class of Finsler metrics which can be expressed in the form 𝐿 =

𝛼 𝜙(𝑠), 𝑠 = 𝛽/𝛼, where 𝛼 = 𝛼(𝑥, 𝑦) = √𝑎𝑖𝑗(𝑥, 𝑦)𝑦𝑖𝑦𝑗  is a Riemannian metric, 𝛽 = 𝛽(𝑦) =  𝑏𝑖(𝑥)𝑦𝑖  is a 1-form 

on 𝑀𝑛 and 𝜙(𝑠)  is a 𝐶∞ positive function on some open interval. In particular, when 𝜙(𝑠) = 1/𝑠, the Finsler 

metric �̅� =  
𝛼2

𝛽
 is called a Kropina metric. Kropina metrics were first introduced by L. Berwald in connection with a 

twodimensional Finsler space with rectilinear extremal and were investigated by V. K. Kropina. They together with 

Randers metrics are 𝐶-reducible. However, Randers metrics are regular Finsler metrics but Kropina metrics are non-

regular Finsler metrics. 

 

S. B�́�cs�́� et al studied curvature properties of (𝛼, 𝛽)-metrics and also studied Finsler spaces of Douglas type [1] [2], 

X. Cheng and Z. Shen worked On Douglas metrics [3], and also Shen et al studied On a class of  Douglas metrics 

[6]. 
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The purpose of this paper is to study projective equivalence between two (𝛼, 𝛽)-metrics, and also we work on 

projective relation between the two (𝛼, 𝛽)-metrics. 

 

PRELIMINARIES 
The terminology and notations are referred to [7] [8].  Let 𝐹𝑛  =  (𝑀, 𝐿) be a Finsler space on a differential manifold 

𝑀 endowed with a fundamental function 𝐿(𝑥, 𝑦). We use the following notions: 

a) 𝑔𝑖𝑗 =
1

2
 𝜕�̇�𝜕�̇�𝐿2, 𝜕�̇� =

𝜕

𝜕𝑦𝑖, 

b) 𝐶𝑖𝑗𝑘 =
1

2
 𝜕�̇�𝑔𝑖𝑗 , 

c) ℎ𝑖𝑗 = 𝑔𝑖𝑗 − 𝑙𝑖𝑙𝑗, 

d) 𝛾𝑗𝑘
𝑖 =

1

2
𝑔𝑖𝑟(𝜕𝑗𝑔𝑟𝑘 + 𝜕𝑘𝑔𝑟𝑗 − 𝜕𝑟𝑔𝑗𝑘), 

e) 𝐺𝑖 =
1

2
𝛾𝑗𝑘

𝑖 𝑦𝑗𝑦𝑘, 𝐺𝑗
𝑖 = 𝜕�̇�𝐺𝑖 , 𝐺𝑗𝑘

𝑖 = 𝜕�̇�𝐺𝑗
𝑖,    𝐺𝑗𝑘𝑙

𝑖 = 𝜕�̇�𝐺𝑗𝑘
𝑖 . 

 

The concept of (𝛼, 𝛽)-metric 𝐿(𝛼, 𝛽) was introduced in 1972 by M. Matsumoto and studied by many authors. The 

Finsler space (𝑀, 𝐿) is said to have an (𝛼, 𝛽)-metric if 𝐿 is a positively  homogeneous function of degree one in two 

variables  𝛼2 = 𝑎𝑖𝑗(𝑥, 𝑦)𝑦𝑖𝑦𝑗 and  𝛽 =  𝑏𝑖(𝑥)𝑦𝑖. 

 

A change 𝐿 → �̅� of a Finsler metric on a same underlying manifold 𝑀 is called projective change if any geodesic in 

(𝑀, 𝐿) remains to be a geodesic in (𝑀, �̅�) and viceversa. We say that a Finsler metric is projectively related to 

another metric if they have the same geodesics as point sets. In Riemannian geometry, two Riemannian metrics 𝛼 

and �̅� are projectively related if and only if their spray coefficients have the relation [3] 

𝐺𝛼
𝑖 = 𝐺�̅�

𝑖 + 𝜆𝑥𝑘𝑦𝑘𝑦𝑖, 

Where 𝜆 = 𝜆(𝑥) is a scalar function on the based manifold and (𝑥𝑖, 𝑦𝑗) denotes the local coordinates in the tangent 

bundle 𝑇𝑀. 

 

Two Finsler metrics 𝐿 and �̅� are projectively related if and only if their spray coefficients have the relation [3] 
𝐺𝑖 = �̅�𝑖 + 𝑃(𝑦)𝑦𝑖 , 

Where  𝑝(𝑦) is a scalar function on 𝑇𝑀 \ {0} and homogeneous of degree one in 𝑦. A Finsler metric is called a 

projectively flat metric if it is projectively related to a locally Minkowskian metric. 

For a given Finsler metric 𝐿 =  𝐿(𝑥, 𝑦), the geodesic of  𝐿 satisfy the following system of differential 

equation: 

𝑑2𝑥𝑖

𝑑𝑡2
+ 2𝐺𝑖 (𝑥,

𝑑𝑥

𝑑𝑡
) = 0, 

where 𝐺𝑖  =  𝐺𝑖(𝑥, 𝑦) are called the geodesic coefficients, which are given by, 

𝐺𝑖 =
1

2
𝑔𝑖𝑗{(𝐿2)

𝑥𝑚𝑦𝑙𝑦𝑚 − (𝐿2)
𝑥𝑙}. 

 

Two Finsler metrics 𝐿 and �̅� on a manifold 𝑀 are said to be (pointwise) projectively related if they have the same 

geodesics as point sets. The equivalent condition has been characterized using spray coefficients. 

By the definition, an (𝛼, 𝛽)-metric is a Finsler metric expressed in the following form, 

𝐿 = 𝛼𝜙(𝑠),        𝑠 =
𝛽

𝛼
, 

where  𝛼 is a Riemannian metric and 𝛽 is a 1-form with ‖𝛽𝑥‖ < 𝑏0,   𝑥𝜖𝑀. The function 𝜙(𝑠) is a 𝐶∞ positive 

function on an open interval (−𝑏0, 𝑏0) satisfying 

𝜙(𝑠) − 𝑠𝜙′(𝑠) + (𝑏2 − 𝑠2)𝜙′′(𝑠) > 0,    |𝑠| ≤ 𝑏 < 𝑏0. 
 

For Kropina metric �̅� =  
𝛼2

𝛽
, it is easy to see that it is not a regular (𝛼, 𝛽)-metric but the relation  𝜙(𝑠) − 𝑠𝜙′(𝑠) +

(𝑏2 − 𝑠2)𝜙′′(𝑠) > 0 is still true for |𝑠|  >  0. In this case, the fundamental form of the metric tensor induced by 𝐿 is 

positive definite. 

Let 

𝑟𝑖𝑗 =
1

2
(𝑏𝑖;𝑗 + 𝑏𝑗;𝑖), 𝑠𝑖𝑗 =

1

2
(𝑏𝑖;𝑗 + 𝑏𝑗;𝑖),    𝑟𝑖 − 𝑟𝑖𝑗𝑏𝑗 , 
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where 𝑏𝑖;𝑗 means the coefficients of the covariant derivative of 𝛽 with respect to 𝛼. and put 𝑟00  =  𝑟𝑖𝑗𝑦𝑖𝑦𝑗 , 𝑟0  =

 𝑟𝑖𝑦
𝑗 , 𝑠𝑙0  =  𝑠𝑙𝑖𝑦𝑖,   𝑠0  =  𝑏𝑙𝑠𝑙0, etc. 

 

The geodesic coefficients Gi of F and geodesic coefficients 𝐺𝑎
𝑖  of 𝛼 are related as follows 

𝐺𝑖 = 𝐺𝛼
𝑖 + 𝛼𝑄𝑠0

𝑖 + Θ{−2𝑄𝛼𝑠0 + 𝑟00}
𝑦𝑖

𝛼
+ 𝜓{−2𝛼𝑄𝑠0 + 𝑟00}𝑏𝑖 ,                                                             (2.1) 

where, 𝑠𝑗
𝑖  =  𝑎𝑖𝑘𝑠𝑘𝑗 and 

 𝑄 =
𝜙′

𝜙−𝑠𝜙′, 

 Θ =  
𝜙𝜙′−𝑠(𝜙𝜙′′+𝜙′𝜙′)

2𝜙((𝜙−𝑠𝜙′)+(𝑏2−𝑠2)𝜙′′)
, 

 𝜓 =
𝜙′′

2((𝜙−𝑠𝜙′)+(𝑏2−𝑠2)𝜙′′)
. 

Definition 2.1.  The tensor 𝐷 =  𝐷𝑗𝑘𝑙
𝑖 𝜕𝑖 ⊗ 𝑑𝑥𝑖 ⊗ 𝑑𝑥𝑘 ⊗ 𝑑𝑥𝑙 , where 

𝐷𝑗𝑘𝑙
𝑖 =

𝜕3

𝜕𝑦𝑖𝜕𝑦𝑘𝜕𝑙
(𝐺𝑖 −

1

𝑛 + 1

𝜕𝐺𝑚

𝜕𝑦𝑚
𝑦𝑖

 
) 

is called the Douglas tensor. A Finsler metric is called Douglas metric if the Douglas tensor vanishes. 

One can see that the Douglas tensor is a projective invariant and it is a non-Riemannian quantity i.e., it is 

vanishes for Riemannian metrics. 

Ningwei Cui and Yi-Bing Shen in [10], defined the Douglas tensor of a general (𝛼, 𝛽)-metric as 

                                                          𝐷𝑗𝑘𝑙
𝑖 =

𝜕3

𝜕𝑦𝑖𝜕𝑦𝑘𝜕𝑙 (𝑇𝑖 −
1

𝑛+1

𝜕𝑇𝑚

𝜕𝑦𝑚 𝑦𝑖

 
)                                                                   (2.2) 

where 

                                                            𝑇𝑖 = 𝛼𝑄𝑠0
𝑖 + 𝜓{−2𝑄𝛼𝑠0 + 𝑟00}𝑏𝑖 .                                                               (2.3) 

and  

𝑇𝑦𝑚
𝑚 = 𝑄′𝑠0 + 𝜓′𝛼−1(𝑏2 − 𝑠2)[𝑟00 − 2𝑄𝛼𝑠0] + 2𝜓[𝑟0 − 𝑄′(𝑏2 − 𝑠2)𝑠0 − 𝑄𝑠𝑠0].                   (2.4) 

In the sequel, we use quantities with a bar to denote the corresponding quantities of the metric �̅�. 

Let 𝐿 and 𝐿 ̅be two (𝛼, 𝛽)-metrics, we assume that they have same Douglas tensor i.e., 𝐷𝑗𝑘𝑙
𝑖  =  �̅�𝑗𝑘𝑙

𝑖 . From (2.2), we 

have 

                                                  
𝜕3

𝜕𝑦𝑖𝜕𝑦𝑘𝜕𝑙 (Ti − �̅�i −
1

n+1
(Tym

m − T̅ym
m )) yi = 0.                                                               

Then there exists a class of scalar functions 𝐻𝑗𝑘
𝑖  =  𝐻𝑗𝑘

𝑖 (𝑥), such that 

                                                   (Ti − �̅�i −
1

n+1
(Tym

m − T̅ym
m )) yi = H00

i ,                                                                        (2.5) 

where H00
i  =  𝐻𝑗𝑘

𝑖 (𝑥)𝑦𝑗𝑦𝑘, 𝑇𝑖 and Tym
m  ym are given by (2.3) and (2.4) respectively. 

 

PROJECTIVE EQUIVALENCE BETWEEN TWO (𝜶, 𝜷)-METRICS 
In this secttion, we find he projective equivalence between First approximate Matsumoto metric and Kropina metric, 

that is, 𝐿 = 𝛼 + 𝛽 +
𝛽2

𝛼
  and  �̅� =  

�̅�2

�̅�
 on a same underlying manifold 𝑀 of dimension 𝑁 ≥ 3.  For (𝛼, 𝛽)-metric 

𝐿 = 𝛼 + 𝛽 +
𝛽2

𝛼
 ,  𝐿 is a regular Finsler metric if and only if 1-form 𝛽 satisfies the condition ‖𝛽𝑥‖ < 1, for any 

𝑥𝜖𝑀. the geodesic coefficients are given by (2.1) with 

 𝑄 =
1+2𝑠

1−𝑠2,  

 Θ =  
1−3𝑠2−4𝑠3

2(1+𝑠+𝑠2)(1−3𝑠2+2𝑏2)
,  

 𝜓 =
1

1−3𝑠2+2𝑏2.                                                                                                                                                          (3.1) 

For Kropina metric �̅� =  
�̅�2

�̅�
 , the geodesic coefficients are given by (2.1) with 

𝑄 =
1

2𝑠
,  

Θ =
𝑠

𝑏2,  

𝜓 =
1

2𝑏2.                                                                                          (3.2) 
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Lemma 3.1. Consider the two (𝛼, 𝛽)-metrics, that is, First approximate Matsumoto metric 𝐿 = 𝛼 + 𝛽 +
𝛽2

𝛼
 and 

Kropina metric �̅� =  
�̅�2

�̅�
 on a manifold M with dimension 𝑛 ≥ 2. Then they have the same Douglas tensor if and 

only if both the metrics 𝐿 and �̅� are Douglas metrics. 

 

Proof: Firstly, we prove the sufficient condition. Let 𝐿 and �̅� be Douglas metrics and corresponding Douglas tensors 

be 𝐷𝑗𝑘𝑙
𝑖   and �̅�𝑗𝑘𝑙

𝑖   . Then by the definition of Douglas metric, we have 𝐷𝑗𝑘𝑙
𝑖 = 0 and �̅�𝑗𝑘𝑙

𝑖 = 0, i.e., both 𝐿 and �̅� have 

same Douglas tensor. Next, we prove the necessary condition. If 𝐿 and �̅� have the same Douglas tensor, then (2.5) 

holds. Substituting (3.1) and (3.2) into (2.5), we get the following, 

 

𝐴𝑖𝛼9 + 𝐵𝛼8 + 𝐶𝑖𝛼7 + 𝐷𝑖𝛼6 + 𝐸𝑖𝛼5 + 𝐹𝑖𝛼4 + 𝐺𝑖𝛼3 + 𝐻𝑖𝛼2 + 𝐽𝑖

𝐾𝛼8 + 𝐿𝛼6 + 𝑀𝛼4 + 𝑁𝛼2 + 𝑃
+

�̅�𝑖�̅�2 + �̅�𝑖

2�̅�2�̅�
= 𝐻00

𝑖 , 

                                                                                                                                                                                   (3.3) 

𝐴𝑖 = (1 + 2𝑏2){𝑠0
𝑖 (1 + 2𝑏2) − 2𝑠0𝑏𝑖}, 

𝐵𝑖 = (1 + 2𝑏2){2𝛽{𝑠0
𝑖 (1 + 2𝑏2) − 2𝑠0𝑏𝑖} + 𝑟00𝑏𝑖 − 2𝜆𝑦𝑖(𝑠0 + 𝑟0)}, 

𝐶𝑖 = −𝛽 {𝑠0
𝑖 {7 + 4𝑏2(4 + 𝑏2)} − 4𝑠0{𝛽𝑏𝑖(2 + 𝑏2) + 3𝜆𝑦𝑖𝑏2}}, 

𝐷𝑖 = 𝛽{2𝛽{−(1 + 2𝑏2)(7 + 2𝑏2)𝑠0
𝑖 𝛽 + 𝜆𝑦𝑖{5(𝑠0 + 𝑟0) + 4𝑏2(4𝑠0 + 𝑟0)} + 4𝑠0𝑏𝑖𝛽(𝑏2 + 2)} − 𝑟00{𝑏𝑖(5 +

          4𝑏2)𝛽 + 6𝑏2𝜆𝑦𝑖}}, 

𝐸𝑖 = 3𝛽3{𝛽{𝑠0
𝑖 (5 + 4𝑏2) − 2𝑠0𝑏𝑖} − 4𝑠0(𝑏2 + 1)𝜆𝑦𝑖}, 

𝐹𝑖 = 𝛽3 {6𝛽2{(5 + 4𝑏2)𝑠0
𝑖 − 2𝑠0𝑏𝑖} + 𝑏𝑖𝛽(7 + 2𝑏2)𝑟00 − 2𝜆𝑦𝑖{𝑟0(7 + 2𝑏2)𝛽 − 3𝑟00(2𝑏2 + 1) + (19 +

          14𝑏2)𝛽𝑠0}}, 

𝐺𝑖 = 3𝛽5{4𝑠0𝜆𝑦𝑖 − 3𝑠0
𝑖 𝛽}, 

𝐻𝑖 = −3𝛽5{𝛽(5𝑠0
𝑖 𝛽 + 𝑟00𝑏𝑖) − 2𝜆𝑦𝑖{(𝑏2 + 2)𝑟00 − 𝛽(5𝑠0 + 𝑟0)}}, 

𝐽𝑖 = 6𝑟00𝛽7𝜆𝑦𝑖,                               (3.4) 

 

and  

 

𝐾 = (1 + 2𝑏2)2, 

𝐿 = −4𝛽2(1 + 2𝑏2)(2 + 𝑏2),  

𝑀 = 𝛽4{(1 + 2𝑏2)2 + 3(8𝑏2 + 7)}, 

𝑁 = −12𝛽6(𝑏2 + 2), 

𝑃 = 9𝛽8 ,                                             (3.5) 

 

and also, 

 

�̅�𝑖 = (�̅�2�̅�0
𝑖 − �̅�0�̅�𝑖 ), 

�̅�𝑖 = �̅�{2𝜆𝑦𝑖(�̅�0 + �̅�0) − �̅�00�̅�𝑖}.                                                                                                                               (3.6) 

 

Here 𝜆 =
1

𝑛 + 1
. Further, (3.3) is equivalent to, 

 {𝐴𝑖𝛼9 + 𝐵𝛼8 + 𝐶𝑖𝛼7 + 𝐷𝑖𝛼6 + 𝐸𝑖𝛼5 + 𝐹𝑖𝛼4 + 𝐺𝑖𝛼3 + 𝐻𝑖 𝛼2 + 𝐽𝑖}(2�̅�2�̅�) 

                                                        +(�̅�𝑖�̅�2 + �̅�𝑖)(𝐾𝛼8 + 𝐿𝛼6 + 𝑀𝛼4 + 𝑁𝛼2 + 𝑃)  

                                                        = 𝐻00
𝑖 (2�̅�2�̅�) (𝐾𝛼8 + 𝐿𝛼6 + 𝑀𝛼4 + 𝑁𝛼2 + 𝑃).                                                   (3.7) 

Replacing 𝑦𝑖 by – 𝑦𝑖 in (3.7), we get 

 {−𝐴𝑖𝛼9 + 𝐵𝛼8 − 𝐶𝑖𝛼7 + 𝐷𝑖𝛼6 − 𝐸𝑖𝛼5 + 𝐹𝑖𝛼4 − 𝐺𝑖𝛼3 + 𝐻𝑖𝛼2 + 𝐽𝑖}(−2�̅�2�̅�) 

                                                           −(�̅�𝑖�̅�2 + �̅�𝑖)(𝐾𝛼8 + 𝐿𝛼6 + 𝑀𝛼4 + 𝑁𝛼2 + 𝑃)  

                                                           = 𝐻00
𝑖 (−2�̅�2�̅�) (𝐾𝛼8 + 𝐿𝛼6 + 𝑀𝛼4 + 𝑁𝛼2 + 𝑃).                                              (3.8) 

Addition of equation (3.7) and (3.8) we have, 

{𝐴𝑖𝛼9  + 𝐶𝑖𝛼7  + 𝐸𝑖𝛼5  + 𝐺𝑖𝛼3 }(�̅�2�̅�) = 0.                                                                                                           (3.9) 

From equation (3.9), we obtain 

𝐴𝑖𝛼9  + 𝐶𝑖𝛼7  + 𝐸𝑖𝛼5  + 𝐺𝑖𝛼3 = 0. 
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Thus, we conclude that (3.3) is equivalent to, 

 𝐵𝛼8  + 𝐷𝑖𝛼6  + 𝐹𝑖𝛼4  + 𝐻𝑖𝛼2 + 𝐽𝑖

𝐾𝛼8 + 𝐿𝛼6 + 𝑀𝛼4 + 𝑁𝛼2 + 𝑃
+

�̅�𝑖�̅�2 + �̅�𝑖

2�̅�2�̅�
= 𝐻00

𝑖  

                                                                                                                                                                                 (3.10) 

equation (3.10) is similar to 

{𝐵𝛼8  + 𝐷𝑖𝛼6  + 𝐹𝑖𝛼4  + 𝐻𝑖 𝛼2 + 𝐽𝑖}(2�̅�2�̅�) + {�̅�𝑖�̅�2 + �̅�𝑖}{𝐾𝛼8 + 𝐿𝛼6 + 𝑀𝛼4 + 𝑁𝛼2 + 𝑃}  

                                        = 𝐻00
𝑖 (2�̅�2�̅�){𝐾𝛼8 + 𝐿𝛼6 + 𝑀𝛼4 + 𝑁𝛼2 + 𝑃} 

From this, we observed that �̅�𝑖�̅�2{𝐾𝛼8 + 𝐿𝛼6 + 𝑀𝛼4 + 𝑁𝛼2 + 𝑃} can be devided by �̅�. Since 𝛽 = 𝜇�̅� then 

�̅�𝑖�̅�2𝐾𝛼8 can be devided by �̅� is prime withrespect to 𝛼 and �̅�, thus, �̅�𝑖 = �̅�2�̅�0
𝑖 − �̅�2�̅�0 can be devided by �̅�. Hence, 

there is a scalar function 𝜑𝑖(𝑥) such that 

                                                                        �̅�2�̅�0
𝑖 − �̅�2�̅�0 = �̅�𝜑𝑖.                                                                        (3.11) 

Contracting (3.11) by  �̅�𝑖  =  �̅�𝑖𝑗𝑦𝑗 , we have  𝜑𝑖(𝑥) = −�̅�𝑖. So we get 

                                                                                 �̅�𝑖𝑗 =
1

�̅�2 (�̅�𝑖 �̅�𝑗 − �̅�𝑗 �̅�𝑖)                                                                        (3.12) 

Thus, By Lemma 2.2 [4], �̅� =  
�̅�2

�̅�
 is a Douglas metric. Since 𝐿 and �̅� have the same Douglas tensor, both of them 

are Douglas metrics. Now we prove the main result: 

 

Theorem 3.1. Let 𝐿 = 𝛼 + 𝛽 +
𝛽2

𝛼
 and �̅� =  

�̅�2

�̅�
  be two (𝛼, 𝛽)-metrics on an 𝑛-dimensional manifold 𝑀(𝑛 ≥  3), 

where 𝛼 and �̅� are two Riemannian metrics, 𝛽 and �̅� are two one-forms. Then 𝐿 is projectively equivalent to �̅� if 

and only if they are Douglas metrics and the geodesic coefficients of  𝛼 and �̅� have the following relation: 

𝐺𝛼
𝑖 + 𝜏𝑏𝑖𝛼2 = �̅�𝛼

𝑖 +
1

2�̅�2
(�̅�2�̅�𝑖 + �̅�00�̅�𝑖) + 𝜃𝑦𝑖, 

where 𝑏𝑖  =  𝑎𝑖𝑗  𝑏𝑗  , �̅�𝑖  =  �̅�𝑖𝑗  �̅�𝑗 , �̅�2  =  ‖�̅�‖
�̅�

2
  and 𝜏 = 𝜏(𝑥) is a scalar function and 𝜃 = 𝜃𝑖𝑦𝑖, 𝜉 = 𝜉𝑖𝑦𝑖 are 1-

form on 𝑀. 

Proof: First we prove the necessary condition. If 𝐿 is projectively eqivalent to  �̅�, they have the same Douglas 

tensor. By Lemma 3.1, we know that 𝐿 and  �̅�are both Douglas metrics. We know that by [9] First approximate 

Matsumoto metric is a Douglas metric if and only if 

                                                                 𝑏𝑖;𝑗 = 𝜏{(1 + 2𝑏2)𝑎𝑖𝑗 − 3𝑏𝑖𝑏𝑗},        (3.13) 

where,  𝜏 = 𝜏(𝑥) is a scalar function on 𝑀. In this case,  𝛽 is closed. Plugging (3.13) and (3.1) into (2.1) we get, 

                                                                𝐺𝑖 = 𝐺𝛼
𝑖 + {

𝛼3−3𝛼𝛽2−4𝛽3

2(𝛼2+𝛼+𝛽+𝛽2)
} 𝜏𝑦𝑖 + 𝜏𝑏𝑖𝛼2.        (3.14) 

On the other hand, Substitute (3.12) and (3.2) into (2.1) which gives, 

                                                                �̅�𝑖 = �̅�𝛼
𝑖 −

1

2�̅�2 {−�̅�2�̅�𝑖 + (2�̅�0𝑦𝑖 − �̅�00�̅�𝑖) +
2�̅�00�̅�𝑦𝑖

�̅�2 }.                            (3.15) 

By the projective equivalence of  𝐿 and �̅� again, there is a scalar function 𝑃 =  𝑃(𝑥, 𝑦) on 𝑇𝑀\{0} such that 

                                                                𝐺𝑖 = �̅�𝑖 + 𝑃𝑦𝑖.          (3.16) 

From (3.14), (3.15) and (3.16) we obtain, 

                                                        {𝑃 − {
𝛼3−3𝛼𝛽2−4𝛽3

2(𝛼2+𝛼+𝛽+𝛽2)
} 𝜏 −

1

�̅�2 {�̅�0 +
�̅�00�̅� 

�̅�2 }} 𝑦𝑖  

                                                                   = 𝐺𝛼
𝑖 − �̅�𝛼

𝑖 + 𝜏𝑏𝑖𝛼2 −
1

2�̅�2
(�̅�2�̅�𝑖 + �̅�00�̅�𝑖)  .                                        (3.17)          

Note, the RHS of (3.17) is a quadratic in 𝑦. Then there exists a 1-form  𝜃 = 𝜃𝑖(𝑥)𝑦𝑖on 𝑀 such that 

 

{𝑃 − {
𝛼3 − 3𝛼𝛽2 − 4𝛽3

2(𝛼2 + 𝛼 + 𝛽 + 𝛽2)
} 𝜏 −

1

�̅�2
{�̅�0 +

�̅�00�̅� 

�̅�2
}} 𝑦𝑖 = 𝜃. 

Thus, we get  

                                                     𝐺𝛼
𝑖 + 𝜏𝑏𝑖𝛼2 = �̅�𝛼

𝑖 +
1

2�̅�2 (�̅�2�̅�𝑖 + �̅�00�̅�𝑖) + 𝜃𝑦𝑖.                                                 (3.18) 

Thus, completes the proof of necessity. Conversly, By (3.14), (3.15) and (3.18) we obtain, 

                                               𝐺𝑖 = �̅�𝑖 + {𝜃 + {
𝛼3−3𝛼𝛽2−4𝛽3

2(𝛼2+𝛼+𝛽+𝛽2)
} 𝜏 −

1

�̅�2 {�̅�0 +
�̅�00�̅� 

�̅�2 }} 𝑦𝑖.                                    (3.19) 
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Hence 𝐿 is projective equivalent to  �̅�. This completes the proof of the Theorem. 

We obtain immidiately from the above Theorem 3.1 

 

Proposition 1. Let  𝐿 = 𝛼 + 𝛽 +
𝛽2

𝛼
 and �̅� =  

�̅�2

�̅�
  be two (𝛼, 𝛽)-metrics on an 𝑛-dimensional manifold 𝑀(𝑛 ≥  3), 

where 𝛼 and �̅� are two Riemannian metrics, 𝛽 and �̅� are two one-forms. Then 𝐿 is projectively equivalent to �̅� if 

and only if the following equations holds 

𝐺𝛼
𝑖 + 𝜏𝑏𝑖𝛼2 = �̅�𝛼

𝑖 +
1

2�̅�2
(�̅�2�̅�𝑖 + �̅�00�̅�𝑖) + 𝜃𝑦𝑖, 

𝑏𝑖;𝑗 = 𝜏{(1 + 2𝑏2)𝑎𝑖𝑗 − 3𝑏𝑖𝑏𝑗}, 

�̅�𝑖𝑗 =
1

�̅�2
(�̅�𝑖 �̅�𝑗 − �̅�𝑗 �̅�𝑖), 

where 𝑏𝑖;𝑗 denote the coefficient of the covariant derivatives of  𝛽 with respect to 𝛼. 

 

PROJECTIVELY RELATED TWO  (𝜶, 𝜷)-METRICS 

In this section, we study First approximate Matsumoto metrics 𝐿 = 𝛼 + 𝛽 +
𝛽2

𝛼
   and Kropina metric �̅� =  

�̅�2

�̅�
 are 

projectively related. 

 

Theorem 4.1. Let 𝐿 = 𝛼 + 𝛽 +
𝛽2

𝛼
 and �̅� =  

�̅�2

�̅�
 be two (𝛼, 𝛽)-metrics on an 𝑛-dimensional manifold 𝑀(𝑛 ≥  3), 

where 𝛼 and �̅� are two Riemannian metrics, 𝛽 and �̅� are two one-forms. Then 𝐿 is projectively related to �̅� if and 

only if 

1. 𝛼 is projectively related to �̅�. 

2. 𝑏𝑖;𝑗 = 𝜏{(1 + 2𝑏2)𝑎𝑖𝑗 − 3𝑏𝑖𝑏𝑗}, 

3. �̅� is closed. 

Proof: Firstly we show that necessary condition. 

Since Douglas metric is an invariant under change between two Finsler metrics. If 𝐿 is projectively related to �̅�, then 

they have same Douglas tensor. From above third section we get that 𝐿 and �̅�are Douglas metrics. We know that 

𝐿 = 𝛼 + 𝛽 +
𝛽2

𝛼
  is a Douglas metrics if and only if 

                                                                 𝑏𝑖;𝑗 = 𝜏{(1 + 2𝑏2)𝑎𝑖𝑗 − 3𝑏𝑖𝑏𝑗}.                                                               (4.1) 

Plugging (4.1) into (2.1) with (3.1) yields 

                                                                𝐺𝑖 = 𝐺𝛼
𝑖 + 𝜏 {{

𝛼3−3𝛼𝛽2−4𝛽3

2(𝛼2+𝛼+𝛽+𝛽2)
} 𝑦𝑖} + 𝜏𝑏𝑖𝛼2.                                                

(4.2) 

Since 𝛽 is closed, 𝑠𝑖𝑗  =  0. Thus 𝑠0
𝑖  =  0 and   𝑠0  =  0. 

So, from (2.1) and (3.2) we have, 

                                                                �̅�𝑖 = �̅�𝛼
𝑖 +

�̅�00�̅� 

�̅�2�̅�2 𝑦𝑖 +
𝑟00𝑏𝑖 

2�̅�2 .                                                                        (4.3) 

Since, 𝐿 is projectively related to �̅�, there is a function 𝑃 =  𝑃(𝑦) on 𝑇𝑀𝑛\{0} such that 

                                                                 𝐺𝑖 = �̅�𝑖 + 𝑃𝑦𝑖.                                                                                         (4.4) 

From (4.2), (4.3) and (4.4) we have, 

                                                 𝐺𝛼
𝑖 − �̅�𝛼

𝑖 = {
�̅�00�̅� 

�̅�2�̅�2 − {
𝛼3−3𝛼𝛽2−4𝛽3

2(𝛼2+𝛼+𝛽+𝛽2)
} 𝜏 + 𝑃} 𝑦𝑖 + {

𝑟00  

2�̅�2 − 𝜏𝛼2} 𝑏𝑖 .                            (4.5) 

The LHS of the above equation is a quadratic form then, there exists a one form  𝜃 = 𝜃𝑖𝑦𝑖  

and 𝜉 = 𝜉𝑖𝑦𝑖 on 𝑀 such that, 

𝑟00𝛽 

𝛼2�̅�2
− {

𝛼3 − 3𝛼𝛽2 − 4𝛽3

2(𝛼2 + 𝛼 + 𝛽 + 𝛽2)
} 𝜏 + 𝑃 = 𝜃, 

                                                                                                       
𝑟00  

2�̅�2 − 𝜏𝛼2 = 𝜉.                                                   (4.6) 

Then we have, 

                                                                   𝐺𝛼
𝑖 = �̅�𝛼

𝑖 + 𝜃𝑦𝑖 + 𝜉 𝑏𝑖 .                                                                           (4.7) 

This completes the proof of necessity. For the sufficiency, we notice that �̅� is closed. It suffice to prove that 𝛼 is 

projectively related to �̅�. From (4.2), (4.3) and (4.7) we have, 
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                                                                   𝐺𝑖 = �̅�𝛼
𝑖 + 𝜃𝑦𝑖 + 𝜉 𝑏𝑖 .                                                                           (4.8) 

i.e., 𝛼 is projectively related to �̅�. 

 

CONCLUSION 
Two Finsler metrics 𝐿 and �̅� are projectively equivalent if and only if their geodesic coefficients have the following 

relation: 

𝐺𝑖 = �̅�𝑖 + 𝑃(𝑥, 𝑦)𝑦𝑖, 
where 𝑃(𝑥, 𝑦) is a scalar function on 𝑇𝑀\{0} with 𝑃(𝑥, 𝜆𝑦)  =  𝜆𝑃(𝑥, 𝑦), 𝜆 >  0. 

In Finsler geometry, there are several important classes of Finsler metrics. Douglas metrics form a rich class of 

Finsler metrics including locally projectively flat Finsler metrics. The study of Douglas metrics will enhance our 

understanding on the geometric meaning of non-Riemannian quantities. 

In the present paper, we proved projective equivalence and relation between First approximate Matsumoto metric  

𝐿 = 𝛼 + 𝛽 +
𝛽2

𝛼
    and Kropina metric �̅� =  

�̅�2

�̅�
. 
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